viernes, 27 de noviembre de 2009

Principales reglas y leyes de la lógica proposicional.

1. Reglas del Modus ponens (MP): A partir de una formula condicional y de su antecedente, se obtiene su consecuente.

1. A → B
2. A
____________
. : . B
Ley del modus ponens (MP).

[(p → q) ^ p] → q

2. Regla del Modus Tollers (MT): A partir de una formula condicional y de la negación de su consecuente, se obtiene la negación del antecedente.

1. A → B
2. ~ B
__________

.:. B


Ley del Modus tollens (MT)

[(p → q) ^ ~ p] → ~ q


3. Regla del silogismo disyuntivo (SD). A partir de una formula disyuntiva y de la negación de una de sus componentes, se obtiene la otra componente.

a. 1. A v B
2. ~ A
________
.:. B

Ley del silogismo (SD)

[(p → q) ^ ~ p] → q


b. A v B
~ B
___________
.:. A
Ley del silogismo disyuntivo (SD)
[(p → q) ^ ~ q] → p

5. Regla del dilema constructivo (DC). A partir de dos formulas condicionales y de la disyunción de obtiene la disyunción de sus consecuentes.


A → B
C → D
A v C
__________
.::. B v D

Ley del dilema constructivo (DC)

[(p → q) ^ (r → s) ^ (p v r)] → (q v s)

Regla del dilema destructivo (DD): A partir de dos formulas condicionales y de las negaciones de sus consecuentes, se obtiene la disyunción de las negaciones de antecedentes.
A → B
C → D
~ B v ~ D
__________
.:. ~ A v ~ C

Ley del dilema destructivo (DD)

{[(p → q) ^ (r → s)] ^ (~ q v ~ s)} → (~ p v ~ r)

Regla de la simplificación (Simp.): A partir de la conjunción de dos formulas se obtiene una de ellas.

A ^ B
________
.:. B


Ley de simplificación (Simp.)

(p ^ q) → q

Regla de conjunción (Conj.): A partir de dos formulas se obtiene la conjunción con cualquiera otra.

A
_______
.:. A ^ B

Ley de la conjunción (Conj.)
(p ^ q) → (p ^ q)

Regla de la adición (Ad.): A partir de una formula se obtiene la disyunción se esa formula con cualquier otra.

A
______
.:. A v B

No hay comentarios:

Publicar un comentario en la entrada